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Filtering, Smoothing, and 
Extrapolations in 
Dose-Response Experiments: 
With Application to Data on 
Respiratory Tumor in Rats 
Nozer D. Singpurwalla & Jingxian Chen : 

Abstract 

A method for inference and extrapolations in certain dose- 
response, damage-assessments and accelerated life-testing stud- 
ies as been proposed by Meinhold and Singpurwalla in 1986. 
The method is based on a use of the Kalman-filter algorithm 
and involves the double lognormal as the distributional assump- 
tion. In this paper, we discuss issues pertaining to a practical 
implementation of this methodology. This involves some in- 
sights based on a simulation study about the specification of 
prior parameters and an application of the proposed methodol- 
ogy to some published data on doses of bischloromethyl ether 
administered to rats. 

Key Words and Phrases: Accelerated Testing, Bioassay, 
Kaiman Filtering, Bayesian Methodology, Damage Assessment. 

1. INTRODUCTION AND OVERVIEW 

Let x denote a dose or a stress that is applied to a biological or an engi- 
neering system, and suppose that x takes values in [0,oo). Let Y(x) be the 
response to x, and suppose that 0 < Y(x) < \;Y(x) could be viewed as the 
propensity of each item to respond to x, or the extent of damage incurred 
by each item when subjected to stress x. Thus, for example, Y(x) = 1(0) 
could imply total resistance (demolition) to (under) x. Often, it is true that 
we are able to test more than one item at any x, but that it may not be 
possible to repeat the test at any x, because doses and stresses cannot be 
exactly controlled. In what follows, we shall assume that the values of x 
are known to an experimenter, but that the Y(x) are unknown "states of 
nature" about which it is desired to make inferences. Such inferences are 
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based on background knowledge about a particular scenario under consid- 
eration, an assumed relationship between Y(x) and x, and tests conducted 
at several values of x. The tests conducted at the several values of x give 
us information about Y(x), but that Y(x) cannot be directly observed. 

It is often the case that Y(x) responds to x in a nonlinear fashion, and 
in view of this, plus considerations of the type cited in Section 1.1, we 
propose, as a model for relating Y(x) and x, the relationship 

Y{x) = exp[-a(x)x^x)], a{x), ß(x) > 0; (1.1) 

a(x) and 3{x) are unknown parameters which depend on x. In what follows, 
E(Y(x)) will denote expectation of the unknown quantity Y(x). 

1.1 Arguments Supporting Choice of the Relationship 

As a special case of (1.1), suppose that 

a(x) = a and 0{x) =-ß, for all x > 0. 

Then 
Y{x) =exp(-«x'J),«,/i> 0; "(1.2) 

the right hand side of the above is the survival function of a Weibull distri- 
bution. A virtue of (1.2) is flexibility in expressing a wide class of subjective 
opinions about the dose-response and stress-damage relationships. For ex- 
ample, it has been recommended for use in food safety assessment studies 
and clinical trials in the biological scenarios [cf. Final Report of the SCF- 
SC (1980)], and in studying the effects of underwater nuclear explosions 
on submarine miniatures in the engineering scenario [cf. McDonald (1989), 
Shaked and Singpurwalla (1990)]. The relationship (1.2) [and also (1.1)] 
can be linearized enabling one to employ standard filtering techniques, and 
when used in connection with data sets on human risk assessment studies, 
it gives an estimated risk at low doses which lies between the estimates for 
the "gamma multi-hit" and the "Armitage-Doll" models. Also, the rela- 
tionship (1.2) has been reported to give good empirical fits to the data. In 
any particular application, it is suggested that the statistical analyst and 
the subject matter specialist examine plots of the Weibull dose-response 
curves for several combinations of values of a and ß, and choose that curve 
or curves that best describe their judgments of the dose-response relation- 
ship. The above can be most effectively done on personal computers. 

1.2 Statement of the Problem 

Suppose that at T distinct dose levels x\ > xn > ... > IT an item or sev- 
eral items are tested and the corresponding observed responses y(xi), 2/(2:2), 
.. .,y(xr), recorded; note that y(x{) provides information about the unob- 
servable Y(xi),i— 1,...,T. We are required to: 
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i)  Make statements of uncertainty about the true responses Y(x), at any 
x, including the i,-'s, i = 1,..., T, at which the tests are conducted. 

ii) Assess V'(XT+I)I 
tne response at a very low dose ir+i, where ir+i 

<< XT 

1.3 The Proposed Approach 

Our approach for addressing the above issues is Bayesian, and involves a 
use of the technology of Kaiman filtering and Kaiman filter smoothing. The 
underpinnings of our approach are outlined in Meinhold and Singpurwalla 
(1987), where due to limitations of space and the need for an exposito- 
ry focus, applications of the methodology to practical scenarios was not 
undertaken. An aim of this paper is to fill the above gap and to attempt 
to demonstrate the potential usefulness of the Kaiman filter approach to 
problems of the kind considered here. It is helpful to point out that Black- 
well and Singpurwalla (1988) undertake an endeavor similar to the one 
discussed here, but focus attention on the case of exponentially distributed 
lifetimes; furthermore, they do not address the issue of smoothing that is 
relevant to problems of this type. 

1.4 Overview of Paper 

In Section 2 we motivate the Kaiman filter model, state the distribution- 
al assumptions, and present the necessary smoothing and extrapolation 
formulae. In Section 3 we describe approaches for obtaining the starting 
values of the Kaiman filter algorithm (i.e. specifying the prior parameters), 
and in Section 4 we describe an application of our approach to some data 
on respiratory tumor of rats subjected to doses of bischloromethyl ether. In 
Section 5 we offer some conclusions and suggest some direction for future 
research along the lines outlined here. 

2. THE FILTERING AND SMOOTHING MODEL 

Our review of the literature suggests that there is a dearth of dose- 
response relationships based on pharmacokinetic, oncological or engineer- 
ing considerations. Thus one's choice of (1.2), the Weibull survival function, 
is at best a reasonable approximation, and hence one should incorporate 
into one's analyses some measure of uncertainty about such approxima- 
tions. Furthermore, there is no reason to sacrifice flexibility by making the 
Weibull scale parameter a, and the shape parameter /?, invariant with the 
dose x. On the contrary, there is evidence in the engineering sciences, that 
high stresses cause a change in the basic failure mechanisms, making it 
reasonable to assume that a and ß depend on x - thus our choice of the 
relationship (1.1). The dynamic nature of a and ß introduces the novelty of 
our approach over the currently used ones. Once the above is undertaken, 
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our set-up fits into the general form of a Kalman-filter model - provided 
that some details which facilitate an iterative computational scheme are 
attended to. 

2.1 The Kaiman-Filter Model and Distributional Considerations 

Assume that E(y(x)) = exp(-n(x)xfj{x)), and suppose that we require 

y"(x) = log{— logy(x)}, to be such that 

y-(x)~A^(x),<72(x)), 

where "~ N{n,cr2)" denotes "normally distributed with mean (variance) 
/t(x)(cr2(x))". Then, it can be seen that y(x) must have a "double lognor- 
mal distribution" [cf. Meinhold and Singpurwalla (1987)] with parameters 
/i(x) and cr2(x), where fx(x) is the median of the distribution of y(x). The 
distribution cited above, has a density which is flexible enough to express 
a wide variety of subjective opinions about y(x), and is an attractive alter- 
native to the beta density for modelling data on proportions - see Ahsan- 
ullah and Holland (1989). Motivated by the fact that when <r2(x) is small, 
E(y{x)) Si exp{—exp(/z(x))}, we propose, as the observation equation of 
the Kaiman filter 

y'{x) = (l.logx) + v(x), (2.1) 

where u{x) ~ >V(0, V(x)), V(x) is the conditional variance of y*(x),, (7, ß)'x 

= (l(x),ß(x))', and ~fix) = log «(a;). 
The set-up (2.1) also implies that y(x) = (Y(x))x(~x\ where logA(ar) = 

v{x), and y*(x) = log{— logy(x)}; the innovation \(x) has a lognormal 
distribution with parameters 0 and cr2{x). For the system equation of the 
Kaiman filter, we propose the "steady model" [cf. Meinhold and Singpur- 
walla (1983)] 

(*) 
R +w(x), - (2.2) 

lPi(x-l) 

where w(x) ~ Af(0, W(x)), and W{x) is the variance-covariance matrix 
of 7(1) and ß{x) conditional on 7(1 — 1) and ß(x — 1); v(x) is assumed 
independent of w(x); (x— 1) is the dose previous to dose x. The values V(x) 
and the four entries of W(x) must be specified by a user. Also to be specified 
by the user are the "starting values" of the Kaiman filter algorithm; these 
are 7(0), /?(0), V(x0) and W(x0). A strategy for specifying these is outlined 
in Section 3. 
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2.2 Results from Filtering and Smoothing 

For compactness of notation, we let y*{xj) = y* ,[-(,ß]'Xj = 8j,[llogXj] = 
Fj, V{Xj) = Vh W(XJ) = Wj, v(xj) = VJ and w{Xj) = w,. Then (2.1) 
and (2.2) can be written as 

y* = FjGj +VJ, and 

6j = Gj8j-l+wj, 

where Gj is a 2 x 2 identity matrix. If we assume that 0;-_i ~ A/"(0j-i, 

Sj-i), then, upon observing y*, 9j ~ M (8j, Sj), and 

9j = GjOj-x + Kjiy'j - FjGjÖj.x), Sj = (I - KjFj)Rj,        (2.3) 

where 

Ä, - Gj Sj_, G; + Wj, ^ = RjF) (FjRjF) + Vj)~\ 

and I is an identity matrix. The relationships in (2.3) are referred to as the 
forward-recurrence equations of the Kaiman filter. Note that, in the above 
scheme, inference for 6j is based upon the previous data, y* ,y]_lt ■ ■ ■ ,y\, 
j = 1,2,...,T, only. Thus, with the exception of 8T, inference for the 
other 9j's is not based on all the data. Should we desire inference for 
8j based on aU the data y*,...,y^, then we need to smooth using the 
backward-recurrence equations [see Appendix A of Meinhold and Singpur- 
walla(1987)], whereby 

f 8j(T) = 8j(j) + Jj+l[8j+l(T) - Gj+l8j{j)l (2 4) 

\  Sj(T) = Sj(j) - Jj + 1[Sj + 1(T) - Ä,-+i]j;-+1, 

where Jj = Sj-i{j-\) G) RJ1 and 8j(k)[Sj(k)} is the mean [covariance] 
of the normal distribution of 0; based on y\,..., y"k. The standard Kalman- 
filter algorithm enables us to produce 0](1), 82('2),.. ., 8T{T) in an efficient 
manner; see (2.3). 

Once 8T(T) is obtained, inference about Y(xT+i) follows from the fact 
that log(-log(y(iT+i))) ~tf(FT+i 8T(T), FT+IST{T) F'T+l), and so 

E{Y(xT+i)) « exp(-exp(FT+i0T(r))). (2.5) 

3. SPECIFICATION OF INPUTS FOR THE KALMAN FILTER 

Let x0 and x_i, x_i > x0 > xx, be two dose levels at which the subject 
matter specialist has the most knowledge about the responses, Y(x0) and 
y(x_i) respectively. Typically, these would be very large dose levels; also, 
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we require that x$ and x_i be close to each other. Suppose that, in the 
opinion of the specialist, the most likely values of Y{XQ) and y(x_i) are 
V'(xo) = 1 — <5o and Y{x_\) = \ — 8\, where <5Q and 8\ are large with So < 8\\ 
what we have in mind is 80 = .995 and 8\ = .999. Then, for x0 close to 
r_ i, we may write 

log{-log(l -S0)} x-f(xo) + ß(x0)\ogx0, 

(3.1) 

log{-log(l -8:)} «7(r0) + /?(a;o)logx_i, 

from which it follows that 

o,    , _ {log(-log(l -fr)) -log(-log(l - 8X))} 
p(x0) - ■ - , 

{logxo -logx_,} 

and 
-f(x0) = log(-log(l -60)) -ß(x0)\ogx0. 

The values ß(xo) and ~/(x0) thus computed will become the starting values 
for the Kalman-filter algorithm. 

Our next task is to pin down V(x0),.. . ■ V(XT), the variances of the 
innovations v{xi), i = 0. . . . , T. In specifying the above, two considerations 
must be borne in mind. The first, is that since y(x) is between 0 and 1, 
the variance of \(x) must be the smallest when Y(x) is either 0 or 1, and 
the largest when Y(x) = .5. Second, under binomial testing, the variance 
of y(x) is approximately of the form m(x) (1 - m(x))/n(x), where m(x) 
is the median of the distribution of y(x) and n(x) is the number of units 
tested at dose x. Following a line of reasoning given in Appendix A, a first 
order approximation to V(x) = a2(x) is of the form 

<r2(x) « log |1(1 + [1 + 4(1 - m(x))/n(x)m(x)(\og(m(x)))2)t)\ .   (3.2) 

Note that in the above expression, cr2(x) — 0 as m(x) — 0[1] provided 
that ii(x) > (m(x))~l [(1 — m(x))~l], and so as is commonly done by en- 
gineers, we may set V(x0) = 0. In (3.2) above. m(x) = exp{— exp(/i(x))}, 
with /i(x) replaced by its predicted value (i{x) obtained from the Kalman- 
filter algorithm. Specifically, 

ß(xi) = lixo)+ ~ß{xo) logxi, and 
ß{xi) = Fi6i,    i=l,...,T, 

where Ö,- is given by (2.3), the forward mechanism of the Kaiman filter. 
Our next step is to pin down W(xo), the variance covariance matrix of 

the starting values 7(10) and ß(x0). For this, we require that the subject 
matter specialist specify, in addition to Y(XQ) and Y(x-i), v\, 1/2 and p, the 
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variances of Y{x0),Y(x-i) and the correlation between Y('Io) and Y*x_i}, 
as perceived bv the specialist. The variances ux and v2 will typically be 
verv small, something like (.001)2 and (.0003)2, respectively, and p should 
be nonnegative, say something of the order of .7 or .8. Once the above are 
done, the relationship (3.1) can be used to show that if b = [vuiy,p]', and 

if Z = [Var(7(*0)), Var(/J(xo)), Cov(y(x0)J(x0))}', then Z = A~lb, where 
the matrix A is of the form 

A = 

1 
1 

4o 

(logzo)^ 
(logx-i)2 

,V 
Vl+l'2 + 2pv/1/11/2 

2 log xo 
2 log i_i 

4p(log Jo + loR J-l) 
l/l+"2 + 2Pv/i/l''2 

Once Z is known, the matrix S(x0) can be constructed, and this en- 
ables us to undertake the first iteration of the Kalman-filter algorithm. 
Subsequent iterations of the algorithm require that we specify W{XJ), 

j = 1 , T. For this, we propose, based on some simulation studies, that 

W(^) = -5(1.5)j(x;. )2(xo)- (3-3) 

The multipliers of S(x0) given above, reflect the following considerations: 

i) The factor .5 (or any other number less than 1) reflects the fact that 
our uncertainty about the parameters, subsequent to observing data, 
should be less than our uncertainty about them prior to the data. 

ii) The factor (1.5)' (or for that matter any other number greater than 
1) reflects the fact that our uncertainty about the parameters should 
increase as we get closer to the low dose levels. 

iii) The factor (XJ-I-XJ) reflects the fact that if the separation between 
two consecutive doses is large then our uncertainty about the model 
parameters should increase. 

It should be clear from the above, that the scheme proposed here could be 
automated once Y(x0), i/lt y(i-i), v2 and p are specified. 

4. APPLICATION-Data on Respiratory Tumor in Rats 

For purposes of illustration, we consider some data on doses (the num- 
ber of six hour exposures by inhalation of 100 parts per billion) of bis- 
chloromethyl ether administered to rats. This data has been abstracted 
from the Final Report of the SCFSC (1980), wherein its analysis using the 
Weibull survival model has been advocated and undertaken. In Table 4.1 
below, we present our data; the response is 0 if a rat develops respiratory 
tumor and 1 otherwise - thus 43/46 denotes the fact that 43 out of 46 
rats have not developed tumors. Our aim is to predict the responses at low 
doses, say 7, 5, 2 and 1. 

Accesion For 
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Availability Codes 
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Table 4.1. Dose-Response Data on Respiratory Tumors in Rats 

Dose: x,- 10 20 40     j     60 SO 100 
Observed 
Response 40/41 43/46 14/18 14/18 19/34 8/20 

We let xi  =  100,-co  = 80 x6 =  10, and y(xi) = 40/41, y(x2) = 
43/46,..., y(xe) = 8/20. For x0 and x_i we choose the doses 250 and 280 
respectively, and for 8Q and 8\ we choose .995 and .999, respectively. Our 
other choices follow the recommendations of Section 3; specifically, u\ — 
(.001)2,i/2 = (-0003)2 and p = .7. Substituting the above in the formulae 
for ß(x0), -f(xo) and A, we obtain, as starting values for the Kaiman filter, 
the following: 

7(x0) = -11-256, ß(x0) = 2.3405, Var(7(x0)) = 1.668 x 10-3, 

Var(/?(x0)) = 5.217 x 10~5 and Cov (7(x0),ß{x0)) = -2.95 x 10~4. 

In Table 4.2 below, we give filtered and smoothed estimates of the pa- 
rameters y(xi) and 3(xt), i = 1,.... 6. The filtered estimates are obtained 
via the forward recurrence equations (2.3) whereas the smoothed estimates 
are obtained via the backward recurrence equations (2.4). The entries in 
Table 4.2 indicate that smoothing does have an effect on the filtered esti- 
mates and that the estimates of 7(1,-) and 0(x{) do change with a;,-. iNote 
that when i = 6. that is, for x^ = 10. the smoothed estimate is indeed the 
filtered estimate. 

Table 4.2. Filtered and Smoothed Estimates of 7(2:1) and /?(x,-) 

Dose: x,- 100 80 60 40 20 10 
Filtered Est. -10.652 -9.563 -10.079 -7.702 -7.965 -7.604 
of 7(x,-) 
Smoothed Est. -9.801 -9.780 -9.651 -7.704 -7.965 -7.604 
of y(xi) 
Filtered Est. 2.234 2.041 2.132 1.712 1.759 1.695 
of 3{xi) 
Smoothed Est. 2.083 2.080 2.057 1.713 1.759 1.695 
of 3{xi) 

In Table 4.3 we give the observed values y(xi) and the predicted, filtered 
and smoothed values of V(x,-), i = 1,..., 6. Note that 

i) E(Y(xi)\y(xi-\),..., y(x\)), is the predicted value of Y(x{), where 
y(x0) = Y(x0), 

ii) E(Y(xi)\y(xi),...., 3/(10)) 's the filtered value of V(x,), and 
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iii) E(Y{xi)\y(x6), y(*o)) is the smoothed value of Y(x{). 

The above conditional expectations can be obtained via formulae analogous 

to (2.5). 

Table 4.3. Predicted, Filtered, Smoothed and Observed Values of V(x.) 

Dose: x; 100 80 60 40 20 10 

Observed Val. .4 .5588 .7778 .7778 .9348 .9756 

ofy(xi) 
Predicted Val. .5377 .6559 .7411 .8963 .9265 .9756 

of Y(ii) 
Filtered Val. .4995 .5834 .7712 .7788 .9348 .9756 

of Y(xi) 
Smoothed Val. .4439 .5986 .7465 .7789 .9348 .9756 

of Yin) 

We note from Table 4.3, that smoothing has a tendency to lower the 
filtered values of V(z,-) and that the predicted values have a tendency to 
be larger than the observed values. Finally, in Table 4.4, we give predicted 
values of Y(xt), for x; = 7, 5, 2 and 1. low doses, at which no testing was 
done and at which inference is most crucial. Note that here the predicted 
values y(xi) are given by E{Y(xz)\y{x6),..., y(x0)), and that this quantity 
is obtained via (2.5). Also given in Table 4.4 are the 90% Probability of 
Coverage Intervals (L,, I',) for the above Y{xi)'s. 

Table 4.4. Predicted Values of Y(x,) at Low Doses 

Dose: z,- 7 5 2 1 

y{xi) .9866 .9924 .9984 .9995 

90% PCI 
for Y(xi) 

L 
U 

.98658 

.98662 
.99239 
.99242 

.9984 

.9984 
.9995 
.9995 

4.1. Comparison with Maximum Likelihood Approach 

It is of interest to compare the results produced by our approach with 
those produced via the conventional approach, in which the relationship 
(1.2) is assumed, and a and ß estimated by the method of maximum like- 

lihood. It can be easily verified that a and /?, the maximum likelihood 
estimates of a and ß, respectively, are ä = 7.496 x 10~4, and ß = 1.513. 
Replacing a and ß by ä and ß respectively, in (1.1), we obtain the max- 
imum likelihood estimates of V(r,-)- These are shown in Table 4.5; also 
shown there, for purposes of comparison, are the smoothed values of V(a:,-) 
and the observed values y(x,). We note from Table 4.5, that whereas the 
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differences between the maximum likelihood estimates of V(xt") and the s- 
moothed values of Y(x{) are significant at the higher doses, the differences 
at the lower doses, particularly the doses at which predictions are sought, 
are negligible if not nonexistent. Thus it appears that a use of our approach 
does not lead one to conclusions that would be significantly different from 
those obtained via a more conventional approach, except that should the 
situation so demand, our approach would provide a greater flexibility than 
the conventional one. Finally, we also note that the smoothed values of 
V'(x,) tend to be larger than those of the maximum likelihood estimates. 

Table 4.5. A Comparison of the Observed and Smoothed Values and 
Maximum Likelihood Estimates of V(ar,-) 

Dose: it- Observed Value Smoothed Value Max. Likelihood Est. 

of y(x{) ofY(xi) of Y(Xi) 
100 .4000 .4439 .4515 
80 .5588 .5986 .5667 

60 .7778 .7465 .6926 

40 .7778 .7789 .8197 

20 .9348 .9348 .9327 

10 .9756 .9756 .9759 

7 .9866 .9859 

5 .9924 .9915 

2 .9984 .9979 

1 .9995 .9993 

5. SUMMARY AND CONCLUSIONS 

It appears to us that using the dynamic linear model set-up of Kaiman 
filtering is a potentially useful approach for making inference under dose- 
response experiments. Its chief virtues are flexibility in modelling - specifi- 
cally, making the parameters dose dependent - and the ease of undertaking 
inference. Its chief disadvantage, especially to a non-Bayesian. is the need to 
specify the starting values. However, as indicated in Section 3, some general 
guidelines can be followed, and once this is done the procedure is almost 
automatic. A computer code which facilitates the required computations 
are given by Chen and Campodonico (1989). An issue that remains to be 
addressed, and one that we have not been able to satisfactorily undertake, 
is that pertaining to the determination of a "safe dose"'. Specifically, what 
is needed is inference about x, when Y(xs) is specified; Y(xs) is typically, 
a number close to 1, say .999 or .9999. Finally, regarding further research 
along the above lines, it would be desirable to develop an inference mech- 
anism which does not rely, as heavily as we have, on a use of the Gaussian 
distribution. 
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APPENDIX A 

THE SPECIFICATION OF a2(x) 

Let Z(x) = -logy(i) = (-logy(x))A(x), then Z(x) has a lognormal 
distribution with parameters log(- log Y(x)) and <r2(x). 

Since y(x) = m(x) ■ exp{-(Z(x) + logm(x))}, we have by a Taylor's 
series expansion 

y(x)    =    m{x)YJ{-y)\Z{x) + \ogm{x))k/k\ 

»    m(x)(l-(Z(x) + logm(x))), 

from which it follows that 

Var(y(x))     «    m2(x) • Var (Z(x)) 

=    m2(x)(logy(x))2e^^K2(l)-l). 

However, y(x) = m(x), since 

.5    =    P(y(x) < m(x)) 

=    P(y(z)A(x) < m(x)) 

=    P(A(x)>logm(x)/logy(x)). 

Therefore, log m(x)/ log Y(x) equals to the median of X(x), which is equal 
to 1. Now (3.2) follows from simple algebra and the fact that Var(y(x)) = 
m(x)(l - m(x))/n(x). 
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